Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Omega ; 7(46): 42199-42207, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36440166

RESUMEN

The moisture uptake of wood is influenced by accessible hydroxyl groups acting as sorption sites and the water-available cell wall space. To what extent do these mechanisms control the moisture uptake in wood needs to be addressed. For this purpose, we modified sorption site density and cell wall space by wood treatments with acetic anhydride or formaldehyde and investigated their effects on moisture uptake. Chemical changes at the cell wall level caused by the treatments were first determined by confocal Raman imaging. Following this, the deuterium exchange method was used to gravimetrically measure the hydroxyl accessibility, while the moisture uptake and the consequent swelling of the wood were determined by dynamic measurements of mass and dimensions within the hygroscopic range. The results showed that the effectiveness in reducing the moisture content of untreated wood across the hygroscopic range differed between the anhydride- and formaldehyde-modified wood. We also observed a poor correlation of accessible hydroxyl concentration in formaldehyde-modified wood with weight percentage gain and water uptake. Moreover, the dynamic mass and dimension analysis indicated that the reduction in swelling in formalized wood was affected by an unidentified mechanism in addition to reduced moisture content.

2.
Sci Rep ; 11(1): 4574, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633184

RESUMEN

Detailed imaging of the three-dimensionally complex architecture of xylary plants is important for studying biological and mechanical functions of woody plants. Apart from common two-dimensional microscopy, X-ray micro-computed tomography has been established as a three-dimensional (3D) imaging method for studying the hydraulic function of wooden plants. However, this X-ray imaging method can barely reach the resolution needed to see the minute structures (e.g. pit membrane). To complement the xylem structure with 3D views at the nanoscale level, X-ray near-field nano-holotomography (NFH) was applied to analyze the wood species Pinus sylvestris and Fagus sylvatica. The demanded small specimens required focused ion beam (FIB) application. The FIB milling, however, influenced the image quality through gallium implantation on the cell-wall surfaces. The measurements indicated that NFH is appropriate for imaging wood at nanometric resolution. With a 26 nm voxel pitch, the structure of the cell-wall surface in Pinus sylvestris could be visualized in genuine detail. In wood of Fagus sylvatica, the structure of a pit pair, including the pit membrane, between two neighboring fibrous cells could be traced tomographically.

3.
Sci Rep ; 10(1): 9543, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533033

RESUMEN

Wood porosity is of great interest for basic research and applications. One aspect is the cell wall porosity at total dry state. When water is absorbed by wood, the uptake of water within the cell wall leads to a dimension change of the material. A hypothesis for possible structures that hold the water is induced cell wall porosity. Nitrogen and krypton physisorption as well as high pressure hydrogen sorption and thermoporosimetry were applied to softwood and hardwood (pine and beech) in dry and wet state for determining surface area and porosity. Physisorption is not able to detect pores or surface area within the cell wall. Krypton physisorption shows surface area up 5 times lower than nitrogen with higher accuracy. With high pressure sorption no inaccessible pore volumes were seen at higher pressures. Thermoporosimetry was not able to detect mesopores within the hygroscopic water sorption region. Physisorption has to be handled carefully regarding the differences between adsorptives. The absence of water-induced mesopores within the hygroscopic region raise doubts on existing water sorption theories that assume these pore dimensions. When using the term "cell wall porosity", it is important to distinguish between pores on the cell wall surface and pores that exist because of biological structure, as there are no water-induced mesopores present. The finding offers the possibility to renew wood-water-sorption theories because based on the presented results transport of water in the cell wall must be realized by structures lower than two 2 nm. Nanoporous structures in wood at wet state should be investigated more intensively in future.

4.
Sci Rep ; 9(1): 10309, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311949

RESUMEN

An investigation of simultaneous dynamic mass and length change measurement for wood is presented. In contrast to the equilibrium in moisture content and swelling and shrinking, where extensive data exists for different wood species, less information is available for the dynamics of moisture changes in direct comparison to the related dimensional changes during the sorption process. This is due to a lack of methods. A gravimetric sorption system, equipped with a high resolution camera and an automated image evaluation, is used to examine simultaneous effects of water vapour sorption dynamics and dimensional change. This method proves a strong correlation between mass and dimensional change, which is in contrast to other investigations. Equilibrium moisture content as well as swelling and shrinking data is in good agreement with literature and manual measurements. The method enables the possibility to determine swelling and shrinking values in-situ without disturbing the targeted climatic conditions. The system is applicable for the investigation of natural wood, modified wood, wood composites or other lignocellulosic materials.


Asunto(s)
Madera/fisiología , Adsorción , Hidrodinámica , Lignina/química , Agua , Madera/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...